Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study

Author:
  • Alice Nicolle
  • Per Hallgren
  • Jessica von Einem
  • Emma Kritzberg
  • Wilhelm Granéli
  • Anders Persson
  • Christer Brönmark
  • Lars-Anders Hansson
Publishing year: 2012
Language: English
Pages: 684-695
Publication/Series: Freshwater Biology
Volume: 57
Issue: 4
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll-a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top-down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top-down control of phytoplankton by zooplankton grazers.

Keywords

  • Ecology
  • climate change
  • lakes
  • phenology
  • phytoplankton
  • spring
  • temperature
  • water colour
  • zooplankton

Other

Published
  • BECC
  • ISSN: 0046-5070
Wilhelm Granéli
E-mail: wilhelm [dot] graneli [at] biol [dot] lu [dot] se

Professor emeritus

Aquatic ecology

+46 70 279 82 34

E-D123

50