Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

A role for antizyme inhibitor in cell proliferation.

Author:
  • Tania Silva
  • Helena Cirenajwis
  • Heather M Wallace
  • Stina Oredsson
  • Lo Persson
Publishing year: 2015
Language: English
Pages: 1341-1352
Publication/Series: Amino Acids
Volume: 47
Issue: 7
Document type: Journal article
Publisher: Springer

Abstract english

The polyamines are important for a variety of cellular functions, including cell growth. Their intracellular concentrations are controlled by a complex network of regulatory mechanisms, in which antizyme (Az) has a key role. Az reduces the cellular polyamine content by down-regulating both the enzyme catalysing polyamine biosynthesis, ornithine decarboxylase (ODC), and the uptake of polyamines. The activity of Az is repressed by the binding of a protein, named Az inhibitor (AzI), which is an enzymatically inactive homologue of ODC. Two forms of AzI have been described: AzI1, which is ubiquitous, and AzI2 which is expressed in brain and testis. In the present study, we have investigated the role of AzI1 in polyamine homeostasis and cell proliferation in breast cancer cells. The results obtained showed that the cellular content of AzI increased transiently after induction of cell proliferation by diluting cells in fresh medium. Inhibition of polyamine biosynthesis induced an even larger increase in the cellular AzI content, which remained significantly elevated during the 7-day experimental period. However, this increase was not a consequence of changes in cell cycle progression, as demonstrated by flow cytometry. Instead, the increase appeared to correlate with the cellular depletion of polyamines. Moreover, induced overexpression of AzI resulted in an increased cell proliferation with a concomitant increase in ODC activity and putrescine content. During mitosis, AzI1 was localised in a pattern that resembled that of the two centrosomes, confirming earlier observations. Taken together, the results indicate that AzI fulfils an essential regulatory function in polyamine homeostasis and cell proliferation.

Keywords

  • Pharmacology and Toxicology
  • Cancer and Oncology

Other

Published
  • Biogenic Amines
  • ISSN: 0939-4451
Stina Oredsson
E-mail: stina [dot] oredsson [at] biol [dot] lu [dot] se

Professor

Functional zoology

+46 46 222 94 97

B-C208

4

Principal investigator

LUCC - Lund University Cancer Centre

Research group

Animal Physiology

Projects

Cell proliferation

Doctoral students and postdocs

PhD Students, main supervisor

Wendy Soria Sotillo

PhD Students, assistant supervisor

Atena Malakpour Permlid