Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain.

  • Stanley Heinze
  • Steven M Reppert
Publishing year: 2012
Language: English
Pages: 1599-1628
Publication/Series: Journal of Comparative Neurology
Volume: 520
Issue: 8
Document type: Journal article
Publisher: John Wiley & Sons

Abstract english

Each fall, eastern North American monarch butterflies (Danaus plexippus) use a time-compensated sun compass to migrate to their overwintering grounds in central Mexico. The sun compass mechanism involves the neural integration of skylight cues with timing information from circadian clocks to maintain a constant heading. The neuronal substrates for the necessary interactions between compass neurons in the central complex, a prominent structure of the central brain, and circadian clocks are largely unknown. To begin to unravel these neural substrates, we performed 3D reconstructions of all neuropils of the monarch brain based on anti-synapsin labeling. Our work characterizes 21 well-defined neuropils (19 paired, 2 unpaired), as well as all synaptic regions between the more classically defined neuropils. We also studied the internal organization of all major neuropils on brain sections, using immunocytochemical stainings against synapsin, serotonin, and γ-aminobutyric acid. Special emphasis was placed on describing the neuroarchitecture of sun-compass-related brain regions and outlining their homologies to other migratory species. In addition to finding many general anatomical similarities to other insects, interspecies comparison also revealed several features that appear unique to the monarch brain. These distinctive features were especially apparent in the visual system and the mushroom body. Overall, we provide a comprehensive analysis of the brain anatomy of the monarch butterfly that will ultimately aid our understanding of the neuronal processes governing animal migration.


  • Neurology


  • ISSN: 1096-9861
Stanley Heinze
E-mail: stanley [dot] heinze [at] biol [dot] lu [dot] se


Functional zoology

+46 46 222 95 78

+46 72 323 24 11