Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Conflicting patterns of mitochondrial and nuclear DNA diversity in Phylloscopus warblers

Author:
  • Staffan Bensch
  • Darren Irwin
  • Jessica Irwin
  • Laura Kvist
  • Susanne Åkesson
Publishing year: 2006
Language: English
Pages: 161-171
Publication/Series: Molecular Ecology
Volume: 15
Issue: 1
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

Molecular variation is often used to infer the demographic history of species, but sometimes the complexity of species history can make such inference difficult. The willow warbler, Phylloscopus trochilus, shows substantially less geographical variation than the chiffchaff, Phylloscopus collybita, both in morphology and in mitochondrial DNA (mtDNA) divergence. We therefore predicted that the willow warbler should harbour less nuclear DNA diversity than the chiffchaff. We analysed sequence data obtained from multiple samples of willow warblers and chiffchaffs for the mtDNA cytochrome b gene and four nuclear genes. We confirmed that the mtDNA diversity among willow warblers is low (π = 0.0021). Sequence data from three nuclear genes (CHD-Z, AFLP-WW1 and MC1R) not linked to the mitochondria demonstrated unexpectedly high nucleotide diversity (π values of 0.0172, 0.0141 and 0.0038) in the willow warbler, on average higher than the nucleotide diversity for the chiffchaff (π values of 0.0025, 0.0017 and 0.0139). In willow warblers, Tajima's D analyses showed that the mtDNA diversity, but not the nuclear DNA diversity, has been reduced relative to the neutral expectation of molecular evolution, suggesting the action of a selective sweep affecting the maternally inherited genes. The large nuclear diversity seen within willow warblers is not compatible with processes of neutral evolution occurring in a population with a constant population size, unless the long-term effective population size has been very large (Ne > 106). We suggest that the contrasting patterns of genetic diversity in the willow warbler may reflect a more complex evolutionary history, possibly including historical demographic fluctuations or historical male-biased introgression of nuclear genes from a differentiated population of Phylloscopus warblers.

Keywords

  • Biological Sciences

Other

Published
  • Molecular Ecology and Evolution Lab
  • ISSN: 0962-1083
Staffan Bensch
E-mail: staffan [dot] bensch [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 42 92

E-C213

Sölvegatan 37, Lund

50

Head of unit

MEMEG

+46 46 222 42 92

E-C213

Sölvegatan 37, Lund

50

Research group

Molecular Ecology and Evolution Lab

Projects

Doctoral students and postdocs

PhD students, main supervisor

Downloads & links