Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Research projects

Microbiology Group

The Microbiology Group's research is focused on Gram-positive bacteria and addresses stress tolerance and response, the maturation process of heme-proteins, cell differentiation and division, the characterization of oxidoreductases and pathogenesis. The studies are mainly focused on the model organisms Bacillus subtilis, Mycobacterium marinum , Streptomyces coelicolor and Streptomyces venezuelae. However, they also involve other bacteria, for example the opportunistic pathogens Enterococcus faecalis and Staphylococcus aureus.

Heme protein and endospore biogenesis

Heme-containing proteins are essential to most cells. Examples of such proteins are hemoglobin, cytochromes, and catalase. Intracellular transport of heme and assembly of heme-proteins are poorly understood processes that are addressed in three projects; Heme A biogenesis, Cytochrome c biogenesis, and Assembly of catalase. Bacterial endospores are probably the most endurable forms of life known, for example they resist heat, chemicals, desiccation and radiation. The heat-resistance is dependent on the cortex layer of the endospore. One line of research concerns regulation of cortex synthesis by a thiol-disulfide redox switch in a penicillin-binding protein.

Cell and developmental biology of Streptomyces

Growth and proliferation of the bacterial cell depends on processes that are highly organised in space and time. For example, proteins involved in cell division, cell wall synthesis, or segregation of chromosomes are directed to be active only at specific sites in the cell. The bacterial cytoskeleton (which shares much similarity with the eukaryotic cytoskeleton) is crucial for this level of organisation and the targeting and movement of proteins and DNA within the cell, but other mechanisms contribute as well. We are investigating how fundamental processes like cell wall growth, cell polarity, cell division, and morphological differentiation are organised and regulated in a large group of Gram-positive bacteria called the Actinobacteria. They are of large medical and industrial relevance and include both antibiotic-producing Streptomyces and pathogens like Mycobacterium tuberculosis.

Bacterial responses to stress

Under hostile or challenging environmental conditions, for example depletion of nutrients, oxygen, and changes in temperature, bacteria launch stress responses which improve their chances to adapt to and to survive various insults. In addition, a variety of chemical threats also provoke a stress response. The research on bacterial stress responses will further the understanding of the basic survival mechanisms of some the most adaptable organisms on the planet.

Microbial pathogenesis

Infection represents an evolutionary arms race between pathogen and host. Thus, throughout human history microbial pathogens have evolved strategies to manipulate and avoid our immune system – a requisite for their ability to establish and maintain infection. As a result, successful pathogens are fantastic immunologists equipped with ability to regulate key aspects of both humoral and cellular immunity.

Page Manager:
Petri dish


Petri dish

Glassware at the lab