Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Protonation and charging of nanosized gibbsite (alpha-Al(OH)(3)) particles in aqueous suspension

Author:
  • J. Rosenqvist
  • Per Persson
  • S. Sjoberg
Publishing year: 2002
Language: English
Pages: 4598-4604
Publication/Series: Langmuir
Volume: 18
Document type: Journal article
Publisher: The American Chemical Society (ACS)
Additional info: 12

Abstract english

Synthetic gibbsite was prepared and thoroughly characterized using X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy, and Fourier transform infrared techniques. The protonation and charging of the particle surface(s) in 20 and 100 mM (Na)Cl ionic media were investigated using potentiometric titrations and zeta potential measurements. These measurements indicated a pH(pznpe) = 9.0 +/- 0.2 and pH(IEP) = 10.0 +/- 0.1. Furthermore, it was concluded that the concentration of singly coordinated sites (equivalent toAlOH) located at the edges of the particles is too low (less than 7% of the total number of crystallographic sites) to explain the proton uptake. Therefore, the doubly coordinated sites (equivalent toAl(2)OH) on the basal planes must be proton reactive. Both proton data and zeta potentials could be described using a three-plane model where adsorbed Na+ at the basal planes was placed in the I-plane and all other adsorbed medium ions were placed in the 2-plane. The following results were obtained: Basal planes equivalent toAl(2)OH + H+ + Cl- reversible arrowequivalent toAl(2)OH(2) Cl-+(-) Igk = 8.49 +/- 0.01 (1) equivalent toAl(2)OH + Na+ reversible arrowequivalent toAl(2)O(-)Na(+) + H+ IgK = -9.62 +/- 0.01 (2) Edges: equivalent toAIOH(0.5-) + H+ reversible arrowequivalent to AlOH20.5+ IgK = 10.0 (3) equivalent toAlOH(0.5-) + Na+ reversible arrowequivalent to -AlOH0.5-Na+ IgK = 0.1 (4) equivalent toAlOH(2)(0.5+) + Cl- reversible arrowequivalent to AlOH20.5+Cl- Igk = 0.1 (5) The protonation constant for the singly coordinated sites (reaction 3) was set equal to pH(IEP). The values of reactions 4 and 5 were taken from the literature. The effect of different reaction times on proton uptake and zeta potential is highlighted. It is clear that increased "equilibrium times" will result in an increased proton uptake, whereas the zeta potential remains constant. This is also reflected in the divergent models presented in the literature with respect to the protonation and charging properties of gibbsite particles.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 0743-7463
Per Persson
E-mail: per [dot] persson [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 17 96

+46 70 266 38 79

E-C350

50

Professor

Centre for Environmental and Climate Research (CEC)

+46 46 222 17 96

+46 70 266 38 79

D350

Ekologihuset, Sölvegatan 37, Lund

50