Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Comparison of the adsorption of o-phthalate on boehmite (gamma-AlOOH), aged gamma-Al2O3, and goethite (alpha-FeOOH)

Author:
  • Per Persson
  • J. Nordin
  • J. Rosenqvist
  • L. Lovgren
  • L. O. Ohman
  • S. Sjoberg
Publishing year: 1998
Language: English
Pages: 252-266
Publication/Series: Journal of Colloid and Interface Science
Volume: 206
Document type: Journal article
Publisher: Elsevier
Additional info: 1

Abstract english

This work is concerned with the adsorption of o-phthalate (1,2-benzenedicarboxylate) at the water-metal (hydr)oxide interface. Previously published infrared spectroscopic, potentiometric, and adsorption data characterizing the boehmite (gamma-AlOOH) system are compared with new data collected for o-phthalate adsorption on aged gamma-Al2O3 and goethite (alpha-FeOOH). The study focuses on identifying bonding mechanisms, stoichiometries, and stabilities of the formed complexes, and comparing these among the three systems. Furthermore, the effects of ionic strength and composition of the ionic medium are investigated. The infrared spectroscopic data provided direct, molecular-level evidence for the existence of two dominating surface complexes on all three solids. One was shown to be a deprotonated outer-sphere species and the other was an inner-sphere surface complex. The inner-sphere complexes on the three solids were structurally related, and they were tentatively assigned to a mononuclear, chelating structure involving both carboxylate groups. The outer-sphere complexes were shown to increase in relative importance at high pH and low ionic strengths, while low pH and high ionic strengths favored the inner-sphere complexes. The information gained from the infrared spectroscopic investigations was used as qualitative input in the formulation of the surface complexation models. New models, based on the extended constant capacitance approach, were presented for the o-phthalate/aged gamma-Al2O3 and o-phthalate/goethite systems. (C) 1998 Academic Press.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 1095-7103
Per Persson
E-mail: per [dot] persson [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 17 96

+46 70 266 38 79

E-C350

50

Professor

Centre for Environmental and Climate Research (CEC)

+46 46 222 17 96

+46 70 266 38 79

D350

Ekologihuset, Sölvegatan 37, Lund

50