Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Spectroscopic studies of aqueous gallium(III) and aluminum(III) citrate complexes

Author:
  • M. Clausen
  • L. O. Ohman
  • Per Persson
Publishing year: 2005
Language: English
Pages: 716-726
Publication/Series: Journal of Inorganic Biochemistry
Volume: 99
Document type: Journal article
Publisher: Elsevier
Additional info: 3

Abstract english

Aqueous gallium(III) citrate complexes have been studied in the 10(-2) M concentration range with extended X-ray absorption fine structure (EXAFS) and FTIR techniques. From EXAFS data, one mononuclear and one oligomeric species were identified at different Ga(III) to citrate ratios. The first shell of the mononuclear complex was found to be distorted, with average Ga-O bond lengths of 1.95 and 2.06 Angstrom, in agreement with the solid-state structure of Ga(Cit)(2)(3-) (Cit = citrate). Also the oligomeric species was found to have a distorted first shell, with average Ga-O bond lengths of 1.95 and 2.04 Angstrom. This complex was found to contain two Ga-Ga distances at 3.03 and 3.56 Angstrom, typical for edge and corner sharing GaO6 octahedra, respectively. The gallium(III) and aluminum(III) citrate systems were compared by means of FTIR, and were found to be analogous. The IR results suggest that the bond lengths derived from EXAFS for the 1:2 gallium(III) citrate complex also provide a good estimate of the corresponding distances in the mononuclear 1: 1 complex. Direct coordination of citrate to the metal ions in the oligomeric gallium(III) citrate complex was indicated from both EXAFS and IR results, and this complex is stoichiometrically analogous to the Al-3(H(-1)Cit)(3)(OH)(H2O)(4-) complex, which has been structurally determined. However, while the formation of the aluminum trimer has been shown to be slow, the gallium trimer was significantly more labile with a rate of formation indicated to be in the order of seconds or faster. (C) 2004 Elsevier Inc. All rights reserved.

Keywords

  • Biochemistry and Molecular Biology

Other

Published
  • ISSN: 1873-3344
Per Persson
E-mail: per [dot] persson [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 17 96

+46 70 266 38 79

E-C350

50

Professor

Centre for Environmental and Climate Research (CEC)

+46 46 222 17 96

+46 70 266 38 79

D350

Ekologihuset, Sölvegatan 37, Lund

50