Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Benzenecarboxylate surface complexation at the goethite (alpha-FeOOH)/water interface: II. Linking IR spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate, and pyromellitate

Author:
  • J. F. Boily
  • Per Persson
  • S. Sjoberg
Publishing year: 2000
Language: English
Pages: 3453-3470
Publication/Series: Geochimica et Cosmochimica Acta
Volume: 64
Document type: Journal article
Publisher: Elsevier
Additional info: 20

Abstract english

A study combining information from infrared spectroscopy and adsorption experiments was carried out to investigate phthalate, trimellitate, and pyromellitate complexes at the goethite (alpha-FeOOH)/water interface. Infrared spectra showed evidence for inner-sphere complexes below pH 6 and outer-sphere complexes in the pH range 3 to 9. Normalized infrared peak areas were used as a semi-quantitative tool to devise diagrams showing the molecular level surface speciation as a function of pH. Surface complexation models that simultaneously predict these diagrams, the proton balance data and the ligand adsorption data were developed with surface complexation theory. Surface complexation modeling was carried out with a Charge Distribution Multisite Complexation Model (CD-MUSIC), assuming goethite particles with surfaces represented by the {110} plane (90% of total particle surface area) and by the {001} plane (10% of total particle surface area). Inner-sphere complexes were described as mononuclear chelates at the {001} plane, whereas outer-sphere complexes were described as binuclear complexes with singly coordinated sites on the {110} plane. The Three-Plane Model (TPM) was used to described surface electrostatics and to distribute the charges of the inner- and the outer-sphere complexes on different planes of adsorption. Copyright (C) 2000 Elsevier Science Ltd.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 0016-7037
Per Persson
E-mail: per [dot] persson [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 17 96

+46 70 266 38 79

E-C350

50

Professor

Centre for Environmental and Climate Research (CEC)

+46 46 222 17 96

+46 70 266 38 79

D350

Ekologihuset, Sölvegatan 37, Lund

50