Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

An ATR-FTIR spectroscopic study of the competitive adsorption between oxalate and malonate at the water-goethite interface

Author:
  • K. Axe
  • M. Vejgarden
  • Per Persson
Publishing year: 2006
Language: English
Pages: 31-37
Publication/Series: Journal of Colloid and Interface Science
Volume: 294
Document type: Journal article
Publisher: Elsevier
Additional info: 1

Abstract english

The competitive adsorption between oxalate and malonate at the water-goethite interface was studied as a function of pH and total ligand concentrations by means of quantitative adsorption measurements and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results obtained show that ATR-FTIR spectroscopy resolves the individual spectroscopic features of oxalate and malonate when adsorbed simultaneously at the water-goethite interface. The characteristic peaks of all four types of predominating surface complexes existing in the single ligand systems were identified, namely one inner sphere and one outer sphere surface complex for each ligand. The quantitative adsorption data showed that oxalate partially out-competes malonate at the water-goethite interface. Evaluation of the peak area variations as a function of pH indicated that the stronger oxalate adsorption can be ascribed to the more stable inner sphere surface complex of oxalate, which in turn is related to the oxalate five-member chelate ring structure yielding a more stable complex compared to the six-member ring of malonate. (c) 2005 Elsevier Inc. All rights reserved.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 1095-7103
Per Persson
E-mail: per [dot] persson [at] biol [dot] lu [dot] se

Professor

MEMEG

+46 46 222 17 96

+46 70 266 38 79

E-C350

50

Professor

Centre for Environmental and Climate Research (CEC)

+46 46 222 17 96

+46 70 266 38 79

D350

Ekologihuset, Sölvegatan 37, Lund

50