Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Acidification of sandy grasslands - consequences for plant diversity

Author:
  • Pål Axel Olsson
  • Linda-Maria Mårtensson
  • Hans Henrik Bruun
Publishing year: 2009
Language: English
Pages: 350-361
Publication/Series: Applied Vegetation Science
Volume: 12
Issue: 3
Document type: Journal article
Publisher: Opulus Press

Abstract english

Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N. as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and Favour of target species.

Keywords

  • Ecology
  • Sandy grasslands
  • Sand steppe
  • diversity
  • Plant species
  • Nutrient availability
  • Acidification
  • Calcareous soil
  • Threatened plant species

Other

Published
  • ISSN: 1402-2001
Pål Axel Olsson
E-mail: pal_axel [dot] olsson [at] biol [dot] lu [dot] se

Professor

Biodiversity

+46 46 222 42 47

E-A323

50

Research group

Plant Biology

Projects

 

Doctoral students and postdocs

PhD students, main supervisor

Theodor Kindeberg

PhD students, assistant supervisor

Sandlilja

Grävmaskin