Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Ecotoxicity screening of seven different types of commercial silica nanoparticles using cellular and organismic assays : Importance of surface and size

Author:
  • Frida Book
  • Mikael T. Ekvall
  • Michael Persson
  • Sara Lönnerud
  • Tobias Lammel
  • Joachim Sturve
  • Thomas Backhaus
Publishing year: 2019
Language: English
Pages: 100-111
Publication/Series: NanoImpact
Volume: 13
Document type: Journal article
Publisher: Elsevier

Abstract english

We show that seven different types of commercial, biocide-free, colloidal silica products with mean particle sizes between 17 and 88 nm with 3 different surface chemistries (Na-stabilized, aluminized and silane-modified) are not toxic to the bacterium Pseudomonas putida, and the algae Raphidocelis subcapitata in the concentration range 5–500 mg/L. They are also not acutely toxic to Daphnia magna at concentrations up to 10,000 mg/L. Six silica particles are toxic to the gill cell line RTgill-W1 from Rainbow trout (Oncorhynchus mykiss), showing a clear concentration-response relationship with EC50 values between 13 and 92 mg/L. Toxicity in the fish cells decreases with increasing hydrodynamic size and is dependent on particle surface area. The average EC50 across the tested particles is 2.1 (±0.3) m2/L. Surface modifications clearly impact toxicity, with silane-modified particles showing no cytotoxicity. The reduced number of free silanol groups on the surface of the silane modified particle, in combination with an increased steric hindrance that prevents contact with the cells is a possible mechanism for the observed lack of toxicity. This is also in line with previous studies on silica nanoparticles in human toxicology. Overall, these findings show a generally low ecotoxicity of silica nanoparticles and indicate that silica particles of different sizes but identical surface chemistry could potentially be grouped into an assessment group under regulation such as REACH.

Keywords

  • Environmental Management
  • Nano Technology
  • Algae
  • Bacteria
  • Colloidal nanoparticles
  • Concentration-response
  • Daphnia
  • Exposure metric
  • Fish cell line
  • Surface modification

Other

Published
  • ISSN: 2452-0748
MikaelEkvall.jpg
E-mail: mikael [dot] ekvall [at] biol [dot] lu [dot] se

Researcher

Division aquatic ecology

+46 46 222 40 80

E-C122

Sölvegatan 37, Lund

50

Researcher

Aquatic Ecology

50

Researcher

Biochemistry and Structural Biology

1

Researcher

NanoLund

14

Research Group

 

Projects