Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Feather moss nitrogen acquisition across natural fertility gradients in boreal forests

Author:
  • Kathrin Rousk
  • Johannes Rousk
  • Davey L. Jones
  • Olle Zackrisson
  • Thomas H. DeLuca
Publishing year: 2013
Language: English
Pages: 86-95
Publication/Series: Soil Biology & Biochemistry
Volume: 61
Document type: Journal article
Publisher: Elsevier

Abstract english

Feather mosses utilize various sources of nitrogen (N): they absorb N deposited on leaf tissue, they host N-2 fixing cyanobacteria, and they are able to take up N directly from soil. In addition to their importance as primary producers in boreal ecosystems, feather mosses play a significant role in N cycling. However, estimates of their ability to take up N from soil in situ are scarce. Further, connecting uptake of N from soil with N-2 fixation could significantly improve our understanding of their role in ecosystem N cycling, but to date this issue has not been addressed. We report results from an uptake experiment in which we tracked C-13-carbon (C), N-15-alanine and N-15-ammonium chloride (NH4Cl) into feather moss (Pleurozium schreberi (Brid.) Mitt.)-soil cores taken along natural fertility gradients in Northern Sweden. The varying fertility conditions coincided with a N-2 fixation gradient in the feather moss. We found that P. schreberi takes up C and N directly from soil. However, the moss did not show a preference for inorganic or organic N sources and only 1.4% of the added amino acid appeared to be taken up from soil in an intact form. No differences in uptake of C or N from soil along the fertility gradients were detected. Nitrogen fixation rates in the moss were thus not correlated with C or N-uptake from soil. Nitrogen fixation as well as uptake of C and N from soil seem to be unaffected by C or N availability in the soil, suggesting that the moss can cover its nutrient demand by absorption of throughfall N and via associated N-2-fixing cyanobacteria without soil-N supplementation. We suggest further, that the moss can represent a (temporary) N-sink in the boreal forest, and that the moss' mechanism of uptake and release thereby will characterize the ecosystem N cycle. (C) 2013 Elsevier Ltd. All rights reserved.

Keywords

  • Biological Sciences
  • Acetylene reduction
  • Bryophytes
  • Cyanobacteria
  • Microbial community
  • N
  • deposition
  • N limitation
  • Organic nitrogen

Other

Published
  • BECC
  • ISSN: 0038-0717
JR photo
E-mail: johannes [dot] rousk [at] biol [dot] lu [dot] se

Senior lecturer

MEMEG

+46 46 222 37 45

E-F222

50

Research group

Projects

Doctoral students and postdocs

PhD students, main supervisor

Visiting PhD students, main supervisor

PhD students, assistant supervisor

Postdocs

Downloads & links