Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

A model to account for data dependency when estimating floral cover in different land use types over a season

Author:
  • Charlotte Baey
  • Ullrika Sahlin
  • Yann Clough
  • Henrik G. Smith
Publishing year: 2017-12
Language: English
Pages: 505-527
Publication/Series: Environmental and Ecological Statistics
Volume: 24
Issue: 4
Document type: Journal article
Publisher: Springer

Abstract english

We propose a model to consider data dependencies and assess spatial and temporal variability in land use specific floral coverage across landscapes. Data dependence arising from repeated measurements across the flowering season is taken into account using hierarchical Archimedean copulas, where the correlation is assumed to be stronger within seasonal periods than between periods. For each seasonal period, a bounded probability distribution is assigned to capture spatial variability in floral cover. The model uses a Bayesian approach and can assess land-use-specific floral covers by integrating experts judgments and field data. The model is applied to assess floral covers in four land use types in southern Sweden, where seasonal variability is captured by dividing the season into two periods according to winter oilseed rape flowering. Floral cover is updated using Markov Chain Monte Carlo sampling based on data from 16 landscapes and 2 years, with repeated measures available from each of the two seasonal periods. Our results indicate that considering data dependence improved the estimation of floral cover based on data observed during a season. Different copula families specifying multivariate probability distributions were tested, and no family had a consistently higher performance in the four tested land use types. Uncertainty in both mode and variability of floral cover was higher when data dependence were accounted for. Posterior modes of floral covers in semi-natural grassland were higher than in field edges, but both expert’s best guesses were higher than these estimates. This confirms previous findings in expert elicitation processes that experts may fail to discriminate extreme values on a bounded range. Floral cover in flower strips were estimated to be smaller/higher than semi-natural grasslands early/late in the season. The mode of floral cover in oil seed rape was estimated to be close to 100%, and higher than estimates provided by expert judgment. Floral covers for different land use classes are key parameters when quantifying floral resources at a landscape level whose assessments rely on both expert judgment and field measurements.

Keywords

  • Environmental Sciences
  • Probability Theory and Statistics
  • Bayesian inference
  • Copula
  • Data-dependency
  • Floral cover data

Other

Published
  • ISSN: 1352-8505
Henrik Smith
E-mail: henrik [dot] smith [at] biol [dot] lu [dot] se

Director

Centre for Environmental and Climate Research (CEC)

+46 46 222 93 79

+46 70 978 20 56

C313

Sölvegatan 37, Lund

50

Professor

Biodiversity

+46 46 222 93 79

+46 70 978 20 56

E-C313

50

Head of department

Centre for Environmental and Climate Research (CEC)

Sölvegatan 37, Lund

50

Coordinator

Lund university sustainability forum

+46 46 222 93 79

+46 70 978 20 56

C 313

Sölvegatan 37, Lund

50

Research group

Biodiversity and Conservation Science

Projects

Doctoral students and postdocs

PhD students, main supervisor

PhD students, assistant supervisor

Postdocs

Downloads & links

Henrik Smith