Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family : MHC class I in a passerine bird

Author:
  • Aleksandra Biedrzycka
  • Alvaro Sebastian
  • Magdalena Migalska
  • Helena Westerdahl
  • Jacek Radwan
Publishing year: 2017-07
Language: English
Pages: 642-655
Publication/Series: Molecular Ecology Resources
Volume: 17
Issue: 4
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co-amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra-deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500-20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within-method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co-amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co-amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage.

Keywords

  • Genetics
  • Amplicon sequencing
  • Bioinformatics
  • Copy number variation
  • Next-generation sequencing
  • Passerine MHC

Other

Published
  • Molecular Ecology and Evolution Lab
  • ISSN: 1755-098X
Helena Westerdahl
E-mail: helena [dot] westerdahl [at] biol [dot] lu [dot] se

Senior lecturer

MEMEG

+46 46 222 36 69

E-C250

50

Research group

Molecular Ecology and Evolution Lab

Projects

Doctoral students and postdocs

Research fellows

Postdocs

Luz Garcia-Longoria

PhD students, main supervisor

Samantha Mellinger

PhD students, assistant supervisor

Gustaf Ekelund Ugge

Helena Westerdahl w house sparrow