Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Compaction of forest soil by logging machinery favours occurrence of prokaryotes

  • S Schnurr-Putz
  • Erland Bååth
  • G Guggenberger
  • H L Drake
  • K Kusel
Publishing year: 2006
Language: English
Pages: 503-516
Publication/Series: FEMS microbiology ecology
Volume: 58
Issue: 3
Document type: Journal article
Publisher: Elsevier

Abstract english

Soil compaction caused by passage of logging machinery reduces the soil air capacity. Changed abiotic factors might induce a change in the soil microbial community and favour organisms capable of tolerating anoxic conditions. The goals of this study were to resolve differences between soil microbial communities obtained from wheel-tracks (i.e. compacted) and their adjacent undisturbed sites, and to evaluate differences in potential anaerobic microbial activities of these contrasting soils. Soil samples obtained from compacted soil had a greater bulk density and a higher pH than uncompacted soil. Analyses of phospholipid fatty acids demonstrated that the eukaryotic/prokaryotic ratio in compacted soils was lower than that of uncompacted soils, suggesting that fungi were not favoured by the in situ conditions produced by compaction. Indeed, most-probable-number (MPN) estimates of nitrous oxide-producing denitrifiers, acetate- and lactate-utilizing iron and sulfate reducers, and methanogens were higher in compacted than in uncompacted soils obtained from one site that had large differences in bulk density. Compacted soils from this site yielded higher iron-reducing, sulfate-reducing and methanogenic potentials than did uncompacted soils. MPN estimates of H-2-utilizing acetogens in compacted and uncompacted soils were similar. These results indicate that compaction of forest soil alters the structure and function of the soil microbial community and favours occurrence of prokaryotes.


  • Biological Sciences


  • Microbial Ecology
  • ISSN: 1574-6941
Erland Bååth
E-mail: erland [dot] baath [at] biol [dot] lu [dot] se

Professor emeritus


+46 46 222 42 64


Sölvegatan 37, Lund