Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Size-dependent effects of an invasive herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian wetlands

Author:
  • Nils Carlsson
  • Christer Brönmark
Publishing year: 2006
Language: English
Pages: 695-704
Publication/Series: Freshwater Biology
Volume: 51
Issue: 4
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

1. The invasive golden apple snail (Pomacea canaliculata), native to South America, is a serious pest on rice seedlings in south-east Asia and has also been shown to consume large amounts of macrophytes in natural wetlands, with large effects on ecosystem functioning. Earlier studies suggest that the snail undergoes an ontogenetic diet shift, feeding on algae and detritus as juveniles and shifting to aquatic macrophytes as adults.

2. Here, we study the effects of snail populations with a size-structure typical of either populations at an invasive front or the size-structure of established populations. In an enclosure experiment performed in a wetland in Laos, we compared treatments with small snails only (3 mm; invasive treatment) to treatments with small, medium sized (10 mm) and adult (> 25 mm) snails (established treatment). The effects of snail grazing on three aquatic macrophyte species and periphytic algae were quantified.



3. We found that snails of all sizes had a strong negative effect on the biomass of all macrophyte species and periphytic algae. There was no evidence of an ontogenetic diet change, i.e. snails in both the invasive and established treatments affected macrophyte biomass. Foraging was size-dependent in that small snails had higher relative foraging capacity (g plant consumed per g of snail) compared with medium and adult snails. Small snails, therefore, depressed growth of medium snails at increasing densities through exploitative competition for preferred resources, while adult snails did not grow at all in the presence of small snails.



4. Density dependence is common in freshwater invertebrates, including gastropod populations, but differences in size dependent foraging- and competitive-ability have rarely been demonstrated in this group of organisms. Knowledge about intra-specific differences in ecological performance may, however, both deepen our understanding of the processes that underlie population dynamics in invertebrates such as gastropods, and help develop control strategies for invasive golden apple snails.

Keywords

  • Ecology

Other

Published
  • ISSN: 0046-5070
Christer Brönmark
E-mail: christer [dot] bronmark [at] biol [dot] lu [dot] se

Head of unit

Division aquatic ecology

+46 46 222 37 02

+46 73 081 55 48

E-C125

Sölvegatan 37, Lund

50

Professor

Aquatic Ecology

50

Professor

Division aquatic ecology

+46 46 222 37 02

+46 73 081 55 48

E-C125

Sölvegatan 37, Lund

50

Research group

Aquatic Ecology

Projects

Doctoral students and postdocs

PhD students, main supervisor

Jerker Vinterstare

PhD students, assistant supervisor

  • Nan Hu
  • Varpu Pärssinen
  • Yongcui Sha
  • Downloads & links

    Centre for Animal Movement Research (CAnMove)

    My ResearchGate page

    Slim and fat fsh