Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora

  • A. Tunlid
  • T. Johansson
  • B. Nordbring-Hertz
Publishing year: 1991-01-01
Language: English
Pages: 1231-1240
Publication/Series: Journal of General Microbiology
Volume: 137
Issue: 6
Document type: Journal article
Publisher: MAIK Nauka/Interperiodica

Abstract english

The nematophagous fungus Arthrobotrys oligospora captures nematodes using adhesive polymers present on special hyphae (traps) which form a three-dimensional network. To understand further the adhesion mechanisms, A. oligospora surface polymers were visualized by transmisson electron microscopy and characterized by chemical methods. Both traps and hyphae were surrounded by a fibrillar layer of extracellular polymers which stained with ruthenium red. The polymer layer was resistant to most of the chemicals and enzymes tested. However, part of the layer was removed by sonication in a Tris-buffer or by extraction in a chaotropic salt solution (LiCl), and the structure of the polymers was modified by treatment with Pronase E. Chemical analysis showed that the crude extracts of surtace polymers removed by sonication or LiCl solution contained neutral sugars, uronic acids and proteins. Gel chromatography of the extracts revealed that the major carbohydrate-containing polymer(s) had a molecular mass of at least 100 kDa, containing neutral sugars (75% by weight, including glucose, mannose and galactose), uronic acids (6%) and proteins (19%). There was more polymer in mycelium containing trap-bearing cells than in vegetative hyphae. SDS-PAGE of the extracted polymers showed that the trap-forming cells contained at least one protein, with a molecular mass of approx. 32 kDa, not present on vegetative hyphae. Examining the capture of nematodes by traps of A. oligospora in which the layer of surface polymers was modified, or removed by chemical or enzymic treatments, showed that both proteins and carbohydrate surface polymers were involved in the adhesion process.


  • Microbiology


  • ISSN: 0022-1287
Anders Tunlid
E-mail: anders [dot] tunlid [at] biol [dot] lu [dot] se

Pro dean

Faculty of Science

+46 70 314 00 67


Sölvegatan 27, Lund




+46 46 222 37 57


Sölvegatan 37, Lund