Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles

  • Gry Lyngsie
  • Lelde Krumina
  • Anders Tunlid
  • Per Persson
Publishing year: 2018-07-17
Language: English
Publication/Series: Scientific Reports
Volume: 8
Issue: 1
Document type: Journal article
Publisher: Nature Publishing Group

Abstract english

The hydroxyl radical (·OH) is a powerful oxidant that is produced in a wide range of environments via the Fenton reaction (Fe2+ + H2O2 → Fe3+ + ·OH + OH-). The reactants are formed from the reduction of Fe3+ and O2, which may be promoted by organic reductants, such as hydroquinones. The aim of this study was to investigate the extent of ·OH formation in reactions between 2,6-dimethoxyhydroquinone (2,6-DMHQ) and iron oxide nanoparticles. We further compared the reactivities of ferrihydrite and goethite and investigated the effects of the O2 concentration and pH on the generation of ·OH. The main finding was that the reactions between 2,6-DMHQ and iron oxide nanoparticles generated substantial amounts of ·OH under certain conditions via parallel reductive dissolution and catalytic oxidation reactions. The presence of O2 was essential for the catalytic oxidation of 2,6-DMHQ and the generation of H2O2. Moreover, the higher reduction potential of ferrihydrite relative to that of goethite made the former species more susceptible to reductive dissolution, which favored the production of ·OH. The results highlighted the effects of surface charge and ligand competition on the 2,6-DMHQ oxidation processes and showed that the co-adsorption of anions can promote the generation of ·OH.


  • Organic Chemistry


  • MICCS - Molecular Interactions Controlling soil Carbon Sequestration
  • ISSN: 2045-2322
Anders Tunlid
E-mail: anders [dot] tunlid [at] biol [dot] lu [dot] se

Pro dean

Faculty of Science

+46 70 314 00 67


Sölvegatan 27, Lund




+46 46 222 37 57


Sölvegatan 37, Lund